检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽娜 吴建华 CUI Shangbin
机构地区:[1]College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China [2]不详
出 处:《数学进展》2008年第1期115-117,共3页Advances in Mathematics(China)
基 金:This work was supported by NSFC(No.10571115).
摘 要:One of the most fundamental problems in theoretical biology is to explain the mechanisms by which patterns and forms are created in the living world. In his seminal paper 'The Chemical Basis of Morphogenesis', Turing showed that a system of coupled reaction-diffusion equations can be used to describe patterns and forms in biological systems. However, the first experimental evidence to the Turing patterns was observed by De Kepper and her associates(1990) on the CIMA reaction in an open unstirred reactor, almost 40 years after Turing's prediction.One of the most fundamental problems in theoretical biology is to explain the mechanisms by which patterns and forms are created in the'living world. In his seminal paper "The Chemical Basis of Morphogenesis", Turing showed that a system of coupled reaction-diffusion equations can be used to describe patterns and forms in biological systems. However, the first experimental evidence to the Turing patterns was observed by De Kepper and her associates(1990) on the CIMA reaction in an open unstirred reactor, almost 40 years after Turing's prediction. Lengyel and Epstein characterized this famous experiment using a system of reaction-diffusion equations. The Lengyel-Epstein model is in the form as follows
关 键 词:反应扩散方程 生物学 定理 定量分析 Lengyel-Epstein模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.29.244