检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛婧 邵陆寿[2] 丁克坚[3] 李静[3] 赵淑元[3]
机构地区:[1]合肥通用职业技术学院机械系 [2]安徽农业大学工学院 [3]安徽农业大学植物保护学院
出 处:《农业机械学报》2008年第1期114-117,共4页Transactions of the Chinese Society for Agricultural Machinery
基 金:江苏大学江苏省现代农业装备与技术重点实验室资助项目(项目编号:NZ200607)
摘 要:为了实时获取作物病害程度信息,研究了一种基于RGB彩色模型的玉米小斑病图像的分割方法,并利用分割结果求得的玉米冠层危害程度来计算整株玉米的发病程度。由于图像中背景复杂,将叶片与病斑同时分离出来的可能性小,故该方法分为两步:首先从获取的RGB图像中提取R、G、B分量,利用2G-R-B图像采用迭代法自动选取阈值将玉米叶片从背景中分割出来;然后根据R-G图像将病斑从叶片上分离出来。30幅图像中玉米叶片、病斑基本上能提取出来,但没有黄化的少量侵染点无法有效分割。In order to instantly acquire the information of hazard levels of plant diseases and pests, a method of segmentation of corn spot image based on RGB color model was proposed. The hazard levels of the whole plant could be calculated through hazard levels of the corn canopy acquired by the results of image segmentation. During the segmentation of crop leaf and disease spots, the method was separated into two steps: (1) R, G, B three components were gotten from RGB color images which were caught by numeral camera, and the corn leaves were segmented from the background of the 2G - R - B images by choosing threshold automatically via iterative method. (2) The disease spots were segmented from leaves based on R - G images. The results showed that the corn leaf blades and the sickness spots of the 30 images could be picked up except a few non-etiolation infection courts.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S435.13[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222