检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学计算机科学与技术学院,杭州310027 [2]浙江省公安厅科技处,杭州310009
出 处:《计算机应用》2008年第3期714-718,共5页journal of Computer Applications
基 金:国家863计划项目(2007AA01Z197);国家自然科学基金资助项目(60402010)
摘 要:随着短信业务的不断发展,垃圾短信的特征和内容也在不断变化,传统垃圾短信过滤系统中存在的主要问题是,短信特征和内容未能得到及时更新而导致过滤性能降低。考虑朴素贝叶斯的快速统计分类及支持向量机(SVM)的增量训练等特点,将其应用于垃圾短信过滤中,并把分析结果及时反馈给在线过滤子系统,使得系统具有更好的自适应性。实验结果表明,该方法可有效地解决当前垃圾短信过滤系统中存在的问题。With the development of the short message services, the characteristics and contents of the spare short Message are also changing constantly, the main problems that exist in the traditional short message filtering systems are that the characteristics and contents fail to be updated in time, which reduced the filter capability. This paper mainly utilized Nave Bays advantage of rapid statistics classification and Support Vector Machine (SVM) incremental training characteristic in Spam Short Message filtering, and provided feedbacks to the online filtering sub-system in time in order to enhance the system-s selfadaptabihty. The experimental results show that this new method effectively deals with the above problems in the traditional spain short Message filtering systems,
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.37.16