混沌时间序列的神经网络预测研究  被引量:10

Chaotic Time Series Forecasting Based on Neural Networks

在线阅读下载全文

作  者:王永生[1] 范洪达[1] 尚崇伟[2] 刘振[1] 

机构地区:[1]海军航空工程学院兵器科学与技术系,山东烟台264001 [2]海军航空工程学院新装备培训中心,山东烟台264001

出  处:《海军航空工程学院学报》2008年第1期21-25,32,共6页Journal of Naval Aeronautical and Astronautical University

摘  要:研究了一类特殊非线性系统——混沌系统的预测问题。混沌是一种普遍存在的非线性动力学行为,混沌时间序列难以预测和控制,文章先是通过重构系统状态相窄间分析混沌时间序列,然后采用多层前向神经网络对其进行预测。对典型的Lorenz和Mackey—Glass混沌序列预测结果表明,如果训练样本足够多,网络结构简单适当,训练后的网络具有很好的泛化性能,说明神经网络预测方法具有较好的工程实用价值。最后分析神经网络初始权值设置对预测性能的影响,指出改进方向。The forecast of a special nonlinear system-chaotic system is studied in this paper. The chaotic is a kind of wicle spread not line dynamics behavior. Facing the problem of difficulty to estimate and control chaotic time series, the theory of state phase space reconstruction was introduced to analyze the chaotic time series, then the multilayer forward neural network was used to forecast these chaotic time series. The results of predicting the typical Lorenz and Mackey-Glass chaotic time series illustrate that, if there is enough train samples and the neural network has compact structure, the trained network would acquire excellent extensive performance. The effect of the network initial weights was also considered, and an improved way was pointed out in the end.

关 键 词:混沌 时间序列 神经网络 预测 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象