A Study of Removing Chlorobenzene by the Synergistic Effect of Catalysts and Dielectric-Barrier Discharge Driven by Bipolar Pulse-Power  

A Study of Removing Chlorobenzene by the Synergistic Effect of Catalysts and Dielectric-Barrier Discharge Driven by Bipolar Pulse-Power

在线阅读下载全文

作  者:李锻 张娣 吴彦 李杰 李国锋 

机构地区:[1]Institute of Electrostatics and Special Power,Dalian University of Technology Dalian 116024,China

出  处:《Plasma Science and Technology》2008年第1期94-99,共6页等离子体科学和技术(英文版)

基  金:National Natural Science Foundation of China(No.50678031)

摘  要:In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A (MS-4A) and MnO2/γ-Al2O3 (MnO2/ALP) as two kinds of catalysts were tested at different positions in a DBD reactor. Catalysts were located either in the discharging area between two electrodes, or just behind the discharging area (in the afterglow area) closed to the outlet. The results indicated that DBD reactor with a bipolar pulse power-supply produced strong instant discharge and energetic particles, which can effectively activate catalysts of MS-4A and MnO2/ALP located in the afterglow area to achieve the synergistic effects on effective fission of chemical bonds of chlorobenzene. It was considered that the gas-chlorobenzene and the chlorobenzene adsorbed on the catalysts were decomposed simultaneously.In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A (MS-4A) and MnO2/γ-Al2O3 (MnO2/ALP) as two kinds of catalysts were tested at different positions in a DBD reactor. Catalysts were located either in the discharging area between two electrodes, or just behind the discharging area (in the afterglow area) closed to the outlet. The results indicated that DBD reactor with a bipolar pulse power-supply produced strong instant discharge and energetic particles, which can effectively activate catalysts of MS-4A and MnO2/ALP located in the afterglow area to achieve the synergistic effects on effective fission of chemical bonds of chlorobenzene. It was considered that the gas-chlorobenzene and the chlorobenzene adsorbed on the catalysts were decomposed simultaneously.

关 键 词:chlorobenzene removal bipolar pulse-power silent discharge molecular sieve 4A MnO2/γ-Al2O3 

分 类 号:X132[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象