检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学计算机学院,北京100083
出 处:《北京航空航天大学学报》2008年第2期148-152,182,共6页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家高技术研究发展计划(863计划)滚动课题资助项目(2002AA113070)
摘 要:日益丰富的门户个性化服务为兴趣建模提出了在描述以及扩展方面更高的要求.提出一种基于潜在兴趣语义描述的门户个性化兴趣模型(PIM-LISD,Personalization Inter-estModel based on Latent Interest Semantic Description),遵循有限混合模型理论,融入了隐式获取的门户个性化兴趣语义以及潜在兴趣语义关联描述.通过合理选取不同先验分布来适配潜在兴趣语义的后验分布,完善了模型的可解释性和自适应能力,并在建模过程中利用优化的期望最大化(TEM,Tempered Expectation Maxim ization)算法进行参数估计.实验表明该方法不仅有效节省建模开销,而且能够提升预测精度,从而验证了其正确性和有效性.There is a great potential for interest modeling on description and extension as the personalization services enrich the portal. A novel personalization interest model based on latent interest semantic description (PIM-LISD) was proposed. As a finite mixture, it was represented with personalized interests elicited implicitly on portal and latent interest relating semantic descriptions. The initialization method was to fit the posterior probabilities along with the different reasonable prior predictions, so the interpretative and adaptive capacity of the model could be perfect. During the building procedure, an improved tempered expectation maximization (TEM) was used for variational expectation maximization estimation. The experiments indicate that the proposed modeling method can not only avoid the complication of potential expensive modeling-building stage effectively, but also increase the prediction precision, therefore proving its validity and feasibility.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.154