检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学土木学院,福建福州350002 [2]沈阳建筑大学土木学院,辽宁沈阳110168
出 处:《工程力学》2008年第2期95-101,共7页Engineering Mechanics
基 金:国家自然科学基金项目(50408033);辽宁高等学校优秀人才支持计划项目(RC-05-16);沈阳建筑大学省级重点实验室开放基金项目(JG-200604)
摘 要:为了有效利用结构健康监测系统中的多源传感器数据信息,提高损伤检测与评估的识别正确率,该文通过构造模糊神经网络分类器,提出了一种基于模糊神经网络的数据融合损伤识别方法并将之应用于结构健康诊断中。它先通过数据预处理,提取原始响应信号中的特征参数,接着将之作为模糊神经网络的输入,构造模糊神经网络模型进行识别决策,最后运用数据融合算法,计算出数据融合后的决策结果。为了验证所提方法的有效性,通过一个7自由度的建筑模型,分别用单一模糊神经网络决策器和数据融合损伤识别方法进行了损伤识别和比较。研究结果表明:该文所提方法比单一决策结果更准确、可靠。In order to make full use of the information collected by multi-source sensors and to increase the damage identification accuracy of a structural health monitoring system, a damage identification method with data-fusion based on fuzzy neural network is proposed in this paper. In this method, original structural response data is preprocessed and feature parameters are extracted. The parameters are used as the input of the fuzzy neural network model, and decision is obtained using this model. Finally, fusion decision results are analyzed by data fusion algorithms. A 7-degree-of-freedom building model is utilized to validate the proposed method, and a comparison is made between this method and a single fuzzy neural network model. The results show that the proposed damage identification method is more exact and reliable than that of a single fuzzy neural network model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80