检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王文辉[1] 冯前进[1] 刘磊[1] 陈武凡[1]
机构地区:[1]南方医科大学医学图像处理重点实验室,广州510515
出 处:《中国图象图形学报》2008年第3期488-493,共6页Journal of Image and Graphics
基 金:国家重点基础研究发展规划"973"项目(2003CB716104)
摘 要:高斯-马尔可夫随机场模型既利用了图像像素的灰度信息,又通过像素类别标记的Gibbs光滑先验概率引入了图像的空间信息,是能较好地分割含有噪声图像的模型,然而,Gibbs惩罚因子β的确定却一直是个难点,为获得好的分割效果,通常用多个β值人工尝试。本文针对此问题,提出了一种新的、简单的、类自适应的惩罚因子β,其利用后验概率来自动计算,并具有各类各向异性。再将模型利用EM-MAP算法来迭代求解。最后,将该算法应用于MR图像的分割,实验结果表明,该算法能自适应地、有效地分割噪声图像,并具有较高的正确分类率和类正确分类率。Gauss-Markov random field model takes advantage of both image intensity and spatial information imposed by Gibbs smoothness prior to the pixel labels and thus can be used to effectively in segmenting the noisy images. However it is always difficult to confirm the Gibbs penalty factor β. As usual,to get good segmentation result for every segmenting-to-be image,various values of β will be tested by hand. So to solve this problem,this article defines a new and simple class-adaptive penalty factor β. It is automatically calculated from the posterior probability and is anisotropic for each class. Furthermore the model iteratively obtains their parameters estimation in the EM-MAP algorithm. Finally, by application of this algorithm to brain MR Image segmentation ,the proposed segmentation scheme is proved effective for noisy image and at the same time it distinguishes itself by higher correct classification ratio and correct classification ratio for each class.
关 键 词:高斯-马尔可夫随机场 类自适应 惩罚因子 EM—MAP 图像分割
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249