检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学数学系,安徽合肥230026
出 处:《中国科学技术大学学报》2008年第2期121-129,162,共10页JUSTC
基 金:国家重点基础研究发展(973)计划(2004CB318000);国家自然科学基金(60533060;60473132)资助
摘 要:采用Blossoming方法,讨论了有理Bézier矩形曲面片和三角曲面片之间的相互转换,将一个(m,n)次有理Bézier矩形片转换为两个m+n次有理Bézier三角片,以及通过重新参数化将一个n次有理Bézier三角片转换为三个非退化(n,n)次有理Bézier矩形片,得到相互转换的显式表达,并给出了算法.数值例子表明了Blossoming方法的有效性.The conversion problem between rectangular and triangular rational Bézier patches was studied by means of the Blossoming method. A rectangular rational Bézier patch of degree (m,n) was converted into two triangular rational Bézier patches of degree m+n and a triangular rational Bézier patch of degree n was converted into three rectangular rational Bézier patches of degree (n,n) through reparametrization. Explicit expressions and algorithms were obtained. Some numerical examples were provided to illustrate the efficiency of Blossoming method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.16