Microbial detoxification of metalaxyl in aquatic system  

Microbial detoxification of metalaxyl in aquatic system

在线阅读下载全文

作  者:Ahmed H. Massoud Aly S. Derbalah El-Sayed. B. Belal 

机构地区:[1]Pesticides Department,Faculty of Agriculture, Kafr El-Sheikh University. Kafr El-Sheikh 33516, Egypt [2]Agriculture Microbiology,Agriculture Botany Department, Faculty of Agriculture, Kafr El-Sheikh University, Kafr El-Sheikh 33516, Egypt

出  处:《Journal of Environmental Sciences》2008年第3期262-267,共6页环境科学学报(英文版)

摘  要:Four microorganisms, Pseudomonas sp. (ER2), Aspergillus niger (ER6), Cladosporium herbarum (ER4) and Penicilluim sp. (ER3), were isolated from cucumber leaves previously treated with metalaxyl using enrichment technique. These isolates were evaluated for detoxification of metalaxyl at the recommended dose level in aquatic system. The effect of pH and temperature on the growth ability of the tested isolates was also investigated by measuring the intracellular protein and mycelia dry weight for bacterial and fungal isolates, respectively. Moreover, the toxicity of metalaxyl after 28 d of treatment with the tested isolates was evaluated to confirm the complete removal of any toxic materials (metalaxyl and its metabolites). The results showed that the optimum degree pH for the growth of metalaxyl degrading isolates (bacterial and fungal isolates) was 7. The temperature 30℃ appeared to be the optimum degree for the growth of either fungal or bacterial isolates. The results showed that Pseudomonas sp. (ER2) was the most effective isolate in metalaxyl degradation followed by Aspergillus niger (ER6), Cladosporium herbarum (ER4) and Penicilluim sp. (ER3), respectively. There is no toxicity of metalaxyl detected in the supematant after 28 d of treatment with Pseudomonas sp. (ER2). The results suggest that bioremediation by Pseudomonas sp. (ER2) isolate was considered to be effective method for detoxification of metalaxyl in aqueous media.Four microorganisms, Pseudomonas sp. (ER2), Aspergillus niger (ER6), Cladosporium herbarum (ER4) and Penicilluim sp. (ER3), were isolated from cucumber leaves previously treated with metalaxyl using enrichment technique. These isolates were evaluated for detoxification of metalaxyl at the recommended dose level in aquatic system. The effect of pH and temperature on the growth ability of the tested isolates was also investigated by measuring the intracellular protein and mycelia dry weight for bacterial and fungal isolates, respectively. Moreover, the toxicity of metalaxyl after 28 d of treatment with the tested isolates was evaluated to confirm the complete removal of any toxic materials (metalaxyl and its metabolites). The results showed that the optimum degree pH for the growth of metalaxyl degrading isolates (bacterial and fungal isolates) was 7. The temperature 30℃ appeared to be the optimum degree for the growth of either fungal or bacterial isolates. The results showed that Pseudomonas sp. (ER2) was the most effective isolate in metalaxyl degradation followed by Aspergillus niger (ER6), Cladosporium herbarum (ER4) and Penicilluim sp. (ER3), respectively. There is no toxicity of metalaxyl detected in the supematant after 28 d of treatment with Pseudomonas sp. (ER2). The results suggest that bioremediation by Pseudomonas sp. (ER2) isolate was considered to be effective method for detoxification of metalaxyl in aqueous media.

关 键 词:METALAXYL BIODEGRADATION microorganisms  toxicity 

分 类 号:X172[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象