检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《东北大学学报(自然科学版)》2008年第3期308-311,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金(60574011).
摘 要:针对状态变量具有范数有界扰动的一类不确定广义系统,研究其基于观测器的鲁棒无源控制问题.首先利用Lyapunov函数方法和矩阵放缩法,以矩阵不等式的形式给出了闭环系统广义二次稳定且鲁棒严格无源的条件.然后以线性矩阵不等式(LMI)的形式给出了系统存在所设计观测器的充分条件,并给出了观测器型控制器的参数表示.同时给出求解问题的具体算法.最后给出算例说明此设计方法的有效性,该结论可以推广到状态与输入均具有扰动的情况.Aiming at a class of uncertain descriptor systems with norm bounded perturbations in state variables, the problem of observer-based robust passive control is discussed. Using the methods of Lyapunov function and the magnified inequalities, the conditions for the closed-loop system to be generalized quadratically stability and robust strictly passive are given in the form of matrix inequalities. Then, the sufficient conditions for the existence of designed observer are presented in terms of linear matrix inequality (LMI), and the parameters of the observer-based controller are provided with the algorithm to solve the problem given. A numerical example is given to illustrate the effectiveness of the proposed method. The conclusions can be extended to the cases that there are perturbations in both the state and input.
关 键 词:广义系统 无源控制 观测器 线性矩阵不等式 广义二次稳定
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171