检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东师范大学数学系
出 处:《运筹学学报》2008年第1期51-59,共9页Operations Research Transactions
基 金:National Natural Science Foundation of China(No.10671074 and No.60673048);Natural Science Foundation of Education Ministry of Anhui Province(No.KJ2007B124 and No.2006KJ256B)
摘 要:给定图G,G的一个L(2,1)-labelling是指一个映射f:V(G)→{0,1,2,…},满足:当dG(u,v)=1时,|f(u)-f(v)|≥2;当dG(u,v)=2时,|f(u)-f(v)|≥1。如果G的一个L(2,1)-labelling的像集合中没有元素超过k,则称之为一个k-L(2,1)- labelling.G的L(2,1)-labelling数记作l(G),是指使得G存在k-L(2,1)-labelling的最小整数k.如果G的一个L(2,1)-labelling中的像元素是连续的,则称之为一个no-hole L(2,1)-labelling.本文证明了对每个双圈连通图G,l(G)=△+1或△+2.这个工作推广了[1]中的一个结果.此外,我们还给出了双圈连通图的no-hole L(2,1)-labelling的存在性.For a given graph G,^* an L(2, 1)-labelling is defined as a function f : V(G) → {0, 1, 2,...} such that |f(u)- f(v)| ≥2 when dG(u, v) = 1 and |f(u)- f(v)| 〉1 1 when dc(u,v) = 2. A k- L(2, 1)-labelling is an L(2, 1)-labelling such that no label is greater than k. The L(2, 1)-labelling number of G, denoted by l(G), is the smallest number k such that G has a k-L(2, 1)-labelling. The no-hole L(2, 1)-lablling is a variation of L(2, 1)-labelling under the condition that the labels used are consecutive. In this paper, we prove that l(G) =△ + 1 or △+ 2 for connected graphs G with two cycles. This work extends a result in [1]. Moreover, we show the existence of no-hole L(2, 1)-labelling on connected graphs with two cycles.
关 键 词:运筹学 频率分配问题 Distance-two Labelling L(2 1)-labelling No-hole L(2 1)-labelling
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249