双圈连通图的L(2,1)-labelling(英文)  

The L(2,1)-labelling on Connected Graph with Two Cycles

在线阅读下载全文

作  者:翟明清[1] 吕长虹[1] 

机构地区:[1]华东师范大学数学系

出  处:《运筹学学报》2008年第1期51-59,共9页Operations Research Transactions

基  金:National Natural Science Foundation of China(No.10671074 and No.60673048);Natural Science Foundation of Education Ministry of Anhui Province(No.KJ2007B124 and No.2006KJ256B)

摘  要:给定图G,G的一个L(2,1)-labelling是指一个映射f:V(G)→{0,1,2,…},满足:当dG(u,v)=1时,|f(u)-f(v)|≥2;当dG(u,v)=2时,|f(u)-f(v)|≥1。如果G的一个L(2,1)-labelling的像集合中没有元素超过k,则称之为一个k-L(2,1)- labelling.G的L(2,1)-labelling数记作l(G),是指使得G存在k-L(2,1)-labelling的最小整数k.如果G的一个L(2,1)-labelling中的像元素是连续的,则称之为一个no-hole L(2,1)-labelling.本文证明了对每个双圈连通图G,l(G)=△+1或△+2.这个工作推广了[1]中的一个结果.此外,我们还给出了双圈连通图的no-hole L(2,1)-labelling的存在性.For a given graph G,^* an L(2, 1)-labelling is defined as a function f : V(G) → {0, 1, 2,...} such that |f(u)- f(v)| ≥2 when dG(u, v) = 1 and |f(u)- f(v)| 〉1 1 when dc(u,v) = 2. A k- L(2, 1)-labelling is an L(2, 1)-labelling such that no label is greater than k. The L(2, 1)-labelling number of G, denoted by l(G), is the smallest number k such that G has a k-L(2, 1)-labelling. The no-hole L(2, 1)-lablling is a variation of L(2, 1)-labelling under the condition that the labels used are consecutive. In this paper, we prove that l(G) =△ + 1 or △+ 2 for connected graphs G with two cycles. This work extends a result in [1]. Moreover, we show the existence of no-hole L(2, 1)-labelling on connected graphs with two cycles.

关 键 词:运筹学 频率分配问题 Distance-two Labelling L(2  1)-labelling No-hole L(2 1)-labelling 

分 类 号:O157.5[理学—数学] X142[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象