检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2008年第6期214-215,218,共3页Computer Engineering
基 金:山东省自然科学基金资助项目(2004ZX14);聊城大学自然科学基金资助项目(X051033)
摘 要:针对独立任务调度问题,提出一种改进的离散粒子群算法,采用基于任务的编码方式,对粒子的位置和速度更新方法进行重新定义。为防止粒子群算法的早熟收敛,给出利用模拟退火算法的局部搜索能力在最优解附近进行精细搜索,以改善解的质量。仿真结果表明,与遗传算法和基本粒子群算法相比,该混合算法具有较好的优化性能。An improved discrete Particle Swarm Optimization(PSO) algorithm is presented to tackle the independent task scheduling problem. In the algorithm, a task based representation is designed, and a new method is used to update the positions and velocity of particles. In order to keep the particle swarm algorithm from premature stagnation, the simulated annealing algorithm, which has local search ability, is combined with the PSO algorithm to make elaborate search near the optimal solution, then the quality of solutions is improved effectively. Experimental results compared with genetic algorithm and basic PSO algorithm show that the hybrid algorithm has good performance.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.139.45