检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海电机学院学报》2006年第3期62-64,共3页Journal of Shanghai Dianji University
基 金:上海电机学院科研项目(C1-0806-0503)
摘 要:支持向量机是一种基于统计学理论学习的新颖的机器学习方法,该方法已广泛应用于解决分类和回归问题。提出一种基于时间序列的最小二乘支持向量机算法应用于电梯交通流的预测方法。仿真结果表明了这种预测方法的有效性。Least squares-support vector machines(LS-SVM) is a kind of novel machine learning method based on statistics theory study, which has been extensively applied to solve the problems of classification and regression. A prediction method of LS-SVM based on time series is presented and applied to the elevator traffic flow. The simulation experiment shows the effectiveness of this kind of prediction method.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.219.214