检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐鸣[1] 王斌[1] 吕爱华 赵柳生 梅自良[3]
机构地区:[1]四川大学环境科学与工程系,成都610065 [2]乌鲁木齐环境监测中心站,乌鲁木齐830000 [3]西华大学能源与环境学院,成都610039
出 处:《环境科学学报》2008年第4期786-790,共5页Acta Scientiae Circumstantiae
摘 要:利用Morlet小波函数进行小波变换,利用Daubechies小波函数进行分解及滤波,以乌鲁木齐市的大气污染物时间序列为例,分析了当地单个大气监测站点NO2的多分辨率的演变特性,并对NO2的时间序列进行了滤波消噪.研究结果显示,NO2年际变化和季节性变化的时间尺度在尺度空间中分布不均匀,具有较明显的局部化特征;除了季节性变化的时间尺度和变化趋势之外,还存在大气污染物中、长期变化趋势.基于滤波消噪后的时间序列建立的预测模型可用于有效地提高大气污染物的预测预报精度.As an example of an air pollutant time series, the evolution characteristics of local NO2 at a single air monitoring site in Urumchi were analyzed based on a wavelet transform with a Moriet wavelet function at muiti-timescale resolution. A time series of NO2 data was filtered and denoised by decomposition and filtering with the Daubechies wavelet function. The results indicated that the variance distributions on multi-timescales for inter-years or inter-seasons were asymmetric, and possessed distinct local characteristics. Besides seasonal time scales or trends, the data also showed some mediumterm and long-term variation trends for air pollutant concentration. A new forecasting model was set up based on the filtered and denoised time series, which could effectively improve the accuracy of prediction for air pollutants.
分 类 号:X32[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15