检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学管理学院
出 处:《西安电子科技大学学报(社会科学版)》2008年第2期40-44,共5页Journal of Xidian University:Social Science Edition
基 金:国家自然科学基金资助支持(70601021)
摘 要:通常的投资建议和两基金分离定理之间存在较大差异,这就是著名的Canner难题。厚尾分布以及投资者对风险的厌恶水平对真实的投资组合行为有显著的影响,在考虑下侧风险的情况下,本文关注投资者如何选择投资组合、两基金分离定理在什么情况下能够成立、以及对投资者的投资策略的选择的影响如何。当目标等于无风险利率时,有文献表明两基金分离定理可以在均值——下偏距(M-LPM)中得到证明。然而,除了以无风险利率为目标外,哪些其它的目标也可以使分离定理成立的问题已经出现。本文尝试回答这个问题,并对投资建议和两基金分离定理的差异给出了合理的解释。The advice of investment is apparently inconsistent with the separation theorem, which is called Canner puzzle. Fat tail and risk preference of investors have a remarkable effect on the investment behavior. Taking into account the downside risk, the paper wants to know how to choose investment portfolio and how two-fund separation theorem can hold and its effect on investment strategy. As measures of portfolio risk, lower partial moments (LPM) have several advantages over variance, the traditional measure of risk. A separation theorem can be proven in the context of mean-LPM portfolio optimization, when the target is equal to the risk-free interest rate. The paper tries to find out which targets admit separation. The rational explications of the diversities between the popular investment advice and the separation theorem are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.250.3