检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]平顶山工学院建筑环境与热能工程系,河南省平顶山市467000 [2]华北电力大学控制科学与工程学院,北京市昌平区102206
出 处:《中国电机工程学报》2008年第8期94-98,共5页Proceedings of the CSEE
基 金:国家自然科学基金项目(60704030)~~
摘 要:依据神经元控制和解耦补偿的思想,引入了一种自适应神经元解耦补偿器,给出了神经元权系数的在线学习方法。在此基础上,通过将模糊控制技术和神经元自适应PID控制技术相结合,提出了一种不依赖于被控对象精确数学模型的多变量解耦控制方案。将该种方法应用于流化床燃烧系统控制,对耦合强烈的流化床锅炉床温、主汽压力、烟气含氧量三维传递函数矩阵进行解耦控制。仿真研究表明,该方案解耦效果良好,并且可以有效克服流化床燃烧对象的大滞后和非线性,获得良好的控制品质。An adaptive neural decoupling compensation method and an on-line learning mechanism for the neuron weights were presented based on the principle of neural control and decoupling control. By combining fuzzy control and neuron adaptive PID control, a decoupling control method that is independent of the accurate mathematical models of the controlled plant was proposed. The method was applied to the decoupling control of the combustion system of a circulating fluidized bed boiler (CFBB) where the three controlled variables (bed temperature, main steam pressure, and flue gas oxygen content) are strongly coupled. Simulation results show that the method can achieve good decoupling effects, and can overcome the large time delay and the nonlinearity that exist in the CFBB.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.174