检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学计算机科学与技术学院,天津300072
出 处:《中国图象图形学报》2008年第4期749-755,共7页Journal of Image and Graphics
基 金:国家自然科学基金项目(60373061);天津市科技攻关培育项目(043104912)
摘 要:为了准确、可靠地配准多模态医学图像,提出了一种基于互信息的全局优化配准算法。该算法首先提取出目标物体的外轮廓面,再用迭代最近点方法初步对齐图像;然后用确定性的全局优化方法—Dividing Rectangles搜索归一化互信息的全局最优解。该算法利用图像的特征信息,为Dividing Rectangles方法提供了一个较好的初始配准位置,并充分利用了Dividing Rectangles方法在小范围内的高效搜索能力。实验结果表明,对于3维人体脑部数据,该算法配准精度高、速度快,而且有效地避免了配准过程中出现的局部极值。A global optimization method based on mutual information is proposed for muhimodality medical image registration. First external surfaces are extracted from various image modalities and the ICP algorithm is adopted to initially align unregistered images. Then the registration is performed by maximization of normalized mutual information using a determin- istic global optimization algorithm named Dividing Rectangles. The surface based matching is used to provide a good start point for Dividing Rectangles in order to fully utilize its high efficiency in small search space. The results of experiment on three dimensional human brain data show that this method is accurate, fast, and avoids local minimums efficiently.
关 键 词:图像配准 互信息 Dividing RECTANGLES
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30