检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:文定都[1]
出 处:《工业仪表与自动化装置》2008年第2期31-34,共4页Industrial Instrumentation & Automation
基 金:湖南省教育厅科研项目资助(07D071)
摘 要:针对工业控制过程中普遍存在的大惯性、纯滞后、时变性、非线性对象的控制问题,采用传统的控制方法不能达到满意的控制效果,提出了基于RBF神经网络的PID自适应控制方案。采用神经网络辨识器在线辨识系统模型,自动调整PID控制器参数,从而实现系统的智能控制。仿真结果表明:该方法对于纯滞后控制系统能进行有效的控制并且具有很好的自适应性和鲁棒性。The conventional control method can't acquire a satisfying result from any industrial process control system with big inertia, pure time edlay, nonlinearity and time variation. The paper presents a self-adaptive PID control strategy based on a neural network provided with an identifier to follow up the system model in an on-line way and adjust the PID control parameters, thus achieving the intelligent control of the system. The simulation result shows that this control method is effective to the control systems with time delay and is of great adaptability and robustness.
分 类 号:TP273.4[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.223