检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《小型微型计算机系统》2008年第4期691-693,共3页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(60372071)资助;辽宁省教育厅高等学校科学研究基金项目(2004C031)资助;辽宁师范大学校基金资助
摘 要:连续属性离散化在机器学习和数据挖掘领域中有着重要的作用.连续属性离散化方法是否合理决定着对信息的表达和提取的准确性.Chi2算法基于统计学理论方法,对连续属性离散化研究产生着重要影响.在对Chi2及相关算法中统计量χ2应用意义讨论的基础上,提出了一种新的(IntegralChi2)算法,该算法基于概率统计理论把统计量χ2与分位点χ2α间对应的积分(概率)作为区间合并的依据,能够更合理更准确地对连续属性进行离散化.实验结果证明了算法的有效性.Discretization is an effective technique to deal with continuous attributes for machine learning and data mining. Reasonability of a discretization process determines the accuracy of expression and extraction for information. This paper discusses Chi2 algorithm, and proposes a new Integral Chi2 algorithm for discretization of real value attributes. The experimental results have proven the validity of the new algorithm.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112