稳态不可压流计算方法在稳恒电磁场中的应用  被引量:2

Application of Theory and Numerical Method of Steady Impressible Fluid Flow in Static Electromagnetic Field

在线阅读下载全文

作  者:雷洪[1] 赫冀成[1] 

机构地区:[1]东北大学材料电磁过程研究教育部重点实验室,辽宁沈阳110004

出  处:《东北大学学报(自然科学版)》2008年第4期545-548,共4页Journal of Northeastern University(Natural Science)

基  金:辽宁省重大科技攻关项目(2005220006);高等学校学科创新引智计划项目(B07015);中国博士后科学基金资助项目(20070421065);东北大学博士后基金资助项目;东北大学留学归国博士启动基金资助项目

摘  要:从流体力学和电磁学的相似性出发,揭示了稳态不可压缩流体流动方程、稳恒电场方程和稳恒磁场方程在数学表达上具有相似性,均可用对流项,扩散项和源项来表达.而且在数值求解中也存在类似规律,可利用计算流体力学中对对流项和扩散项的处理方法来处理电磁场方程中的对流项和扩散项.通过分析上(下)风格式与向前(后)差分格式的数学意义和物理意义,提出采用上风格式和下风格式能求解电荷运动问题,而上风格式能求解流体力学问题.The similarity between fluid mechanism and electromagnetics leads to the similarity between the governing equations of steady fluid flow, electrostatic field and static magnetic field, and there are some similar rules in numerical calculation. All these equations are expressed in terms of convection, diffusion and source, and the numerical method in computational fluid mechanics can be used to calculate the electromagnetic field equations. Based on the analysis of both the mathematic and physical meanings of upwind (or downwind) scheme and forward (or backward) difference scheme, it is suggested that the upwind and downwind Schemes are available to solve the equations involving electric charge movement, and the upwind scheme available to solve the equations for fluid flow.

关 键 词:MAXWELL方程 Navior-Stokes方程 数值方法 向前差分 向后差分 上风格式 下风格式 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象