基于二阶锥规划的非均匀线列阵优化波束形成  被引量:6

Optimum Beamforming With Constant Sidelobe Level of Non-uniform Linear Arrays Based on Second Order Cone Programming

在线阅读下载全文

作  者:陈鹏[1] 马晓川[1] 闫晟[1] 梁亦慧 

机构地区:[1]中国科学院声学研究所,北京100080 [2]船舶系统工程部,北京100036

出  处:《电声技术》2008年第4期39-43,共5页Audio Engineering

基  金:国家自然科学基金(60472101:功率谱和方位谱时变特性建模及在水下目标检测跟踪中的应用);中科院院长资助项目(0729031511:优化波束形成和后置参数估计的算法研究实现)

摘  要:针对常规Chebyshev方法只能应用于均匀线列阵恒定旁瓣级优化波束形成的问题,提出基于二阶锥规划的非均匀线列阵恒定旁瓣级优化波束形成方法。该方法根据波束形成器在期望信号方向无失真响应和旁瓣级恒定条件下最小化波束噪声输出功率的准则来设计优化波束形成。这种优化波束形成问题可以通过数学变换转化为标准二阶锥规划形式进行求解。仿真结果表明,通过选取合适的旁瓣约束范围,所提方法对于均匀线列阵和非均匀线列阵均可以取得理想的恒定旁瓣级优化波束形成结果。To solve the problem tha the Chebyshev method can only be applied to the optimum beamforming with CSL (Constant Sidelobe Level) of ULA (Uniform Linear Array), an optimum beamfonning approach with CSL of NULA(Non-uniform Linear Array) based on SOCP(Second Order Cone Programming) is proposed. This approach designs the optimum beamforming according to the rule of minimizing the beamformer's noise output power while keeping the distortionless response in the direction of desired signal and keeping the constant sidelobe level This kind of optimum beamforming problem can be solved after being converted to the form of standard SOCP through mathematical transformation. Simulation results demonstrate that this approach can achieve the desired optimum beamforming with CSL to both ULA and NULA via the proper selection of sidelobe constraint domain.

关 键 词:CHEBYSHEV 方法 恒定旁瓣级 二阶锥规划 旁瓣级波束宽度 J 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象