检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学自动化工程学院,成都610054 [2]电子科技大学空天科学技术研究院,成都610054
出 处:《电子测量与仪器学报》2008年第2期72-75,共4页Journal of Electronic Measurement and Instrumentation
基 金:国家自然科学基金资助项目(编号:60372001,90407007);教育部博士点基金资助项目(编号:20030614006)
摘 要:支持向量机是建立在统计学习理论基础上的机器学习方法,结构简单,泛化能力强,对小样本分类具有良好的识别效果。本文提出了基于支持向量机的模拟电路故障诊断新方法,描述了电路故障特征的选取过程,建立了以支持向量机为基础的模拟电路故障诊断模型。并以双二次滤波电路为诊断实例,实验结果表明,该方法故障诊断准确率大于96.5%,优于传统方法。Support vector machine (SVM) is a machine-learning algorithm based on statistical theory, which has the advantages of simple structure and strong generalization ability as well as classification ability for small sample. A new method for analog circuit fault diagnosis based on SVM is presented in this paper. The method for extracting the fault signatures of the circuit under test is pro- posed and the analog circuit fault diagnosis model based on SVM is established. The simulation results of a biquadratic filter testify that the proposed approach for analog circuit fault diagnosis is superior to conventional ones, the fault diagnosis accurate rate of the method is greater than 96. 5% and the fault diagnosis range extends from single-point failures to interval failures.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222