基于特征散度的自适应FCM图像分割算法  被引量:19

An Adaptive FCM Image Segmentation Algorithm Based on the Feature Divergence

在线阅读下载全文

作  者:王向阳[1] 王春花[1] 

机构地区:[1]辽宁师范大学计算机与信息技术学院

出  处:《中国图象图形学报》2008年第5期906-910,共5页Journal of Image and Graphics

基  金:国家自然科学基金项目(60773031);辽宁省自然科学基金项目(20032100);视觉与听觉信息处理国家重点实验室(北京大学)开放基金项目(0503);计算机软件新技术国家重点实验室(南京大学)开放基金项目(A200702);信息安全国家重点实验室(中国科学院软件研究所)开放基金项目(03-06)

摘  要:图像分割是模式识别、图像理解、计算机视觉等领域的重要研究内容。基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,但其存在距离测度鲁棒性差、需预先给出初始聚类数目、未考虑图像局部相关特性等问题。为克服上述缺点,通过引入特征散度进行距离测度,并结合聚类有效性指数自适应确定初始聚类数目和根据Laws纹理测度提取图像特征等措施,提出了一种新的FCM图像分割算法。实验结果表明,该新算法可以有效地提高图像的分割效果(特别是纹理图像),其分割结果优于现有FCM图像分割方案。Fuzzy C-means (FCM) clustering is one of well-known unsupervised clustering techniques, which has been widely used in automated image segmentation. However, when the classical FCM algorithm is used for image segmentation, there are also some problems, such as weak robustness of distance measure, reguire-ments of setting the initial number of clusters in advance, without considering local image feature. In this paper, an adaptive FCM image segmentation algorithm based on the feature divergence is proposed, which can accomplish image segmentation by importing the feature divergence vector into distance measure, incorporating the cluster validity exponent to ascertain the initial number of clusters automatically and extracting the image feature according to Laws texture measure. Experimental results show that the proposed method is simple and work well for most images (especially for texture images), and has better segmentation effect than the existing FCM image segmentation.

关 键 词:图像分割 模糊C-均值聚类 Laws纹理测度 聚类有效性 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象