基于复数小波域的多聚焦图像融合  被引量:10

A Multi-focus Image Fusion Algorithm in the Complex Wavelet Domain

在线阅读下载全文

作  者:孙巍[1] 王珂[1] 袁国良[2] 王楠[1] 

机构地区:[1]吉林大学通信工程学院,长春130025 [2]上海海事大学信息工程学院,上海200135

出  处:《中国图象图形学报》2008年第5期951-957,共7页Journal of Image and Graphics

摘  要:提出了一种基于Q-shift双树复数小波变换的图像融合方法,该方法利用Q-shift双树复数小波变换对图像进行分解,根据低、高频系数相关性的特点,采用邻域梯度取大和"合成图像模值取大"相结合的融合方法对低、高频系数分别进行融合,并对高频融合结果进行"一致性"校验。实验表明,本文算法具有优于基于小波变换方法的性能。由于Q-shift双树复数小波近似的平移不变性和良好的方向选择性,因此能够有效地避免空间域融合算法存在的对比度低、块效应等问题以及基于小波变换融合算法存在的"伪影"和"振铃效应"。The images are processed with Q-shift DT-CWT. The low frequency coefficients and high frequency coefficients are fused with NGMS (Neighborhood Gradient Maximum Selectivity) and SI-MVMS (Synthesis Image Module Value Maximum Selectivity) separately because of their different characteristics. For the low frequency coefficients, the ones having maximal neighborhood gradient are selected. For the high frequency coefficients, the ones having maximal absolute values are selected, and verify consistency of the fused coefficients . Experience results show that the images fused by the proposed algorithm are of better quality than that produced through the algorithms with wavelet transform. The proposed algorithm not only solves the problems such as low contrast and blocking effects caused by fusion algorithms in space domain, hut also avoids the artifacts and ringing artifacts exhibited by conventional wavelet based fusion algorithms, which benefit from the approximate shift invariant and good directional selectivity of Q-shift DT-CWT.

关 键 词:多聚焦图像融合 Q-shift DT-CWT 邻域梯度 模值 一致性校验 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象