基于边界近邻的最小二乘支持向量机实现  

Least Squares Support Vector Machine Based on Boundary Nearest

在线阅读下载全文

作  者:马波[1] 王正群[1] 侯艳平[1] 邹军[1] 

机构地区:[1]扬州大学信息工程学院,江苏扬州225009

出  处:《计算机技术与发展》2008年第5期108-111,共4页Computer Technology and Development

基  金:江苏省自然科学基金项目(05KJB5201);扬州大学自然科学基金(KK0413160)

摘  要:最小二乘支持向量机采用最小二乘线性系统代替传统的支持向量即采用二次规划方法解决模式识别问题,能够有效地减少计算的复杂性。但最小二乘支持向量机失去了对支持向量的稀疏性。文中提出了一种基于边界近邻的最小二乘支持向量机,采用寻找边界近邻的方法对训练样本进行修剪,以减少了支持向量的数目。将边界近邻最小二乘支持向量机用来解决由1-a-r(one-against-rest)方法构造的支持向量机分类问题,有效地克服了用1-a-r(one-against-rest)方法构造的支持向量机分类器训练速度慢、计算资源需求比较大、存在拒分区域等缺点。实验结果表明,采用边界近邻最小二乘支持向量机分类器,识别精度和识别速度都得到了提高。Least squares support vector machines can reduce the high computational complexity. Duo to equality type constraints in the formulation, the solution follows from solving a set of linear equations instead of quadratic programming for classical SVM. But unfortunately a very attractive feature of SVM, namely its sparseness, was lost. A new least squares support vector machines based on boundary nearest was propsed, which reduced the number of support vector by using boundary nearest methods pruning the training sample. Meanwhile,uses least square support vector machine for solving multiclass problerus constructed by 1 - a - r (one- against - rest) method, which overcame the demerits of low training speed, high computational requirements and existing reject area in 1 - a- r (one- against- rest) method effectively. Experimental result shows that the performance of accuracy and speed of classifiers are improved after using least squares support vector machines based on boundary nearest.

关 键 词:最小二乘支持向量机 一对多方法 边界近邻 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象