检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军装甲兵技术学院电子工程系,吉林长春130117
出 处:《长春工业大学学报》2008年第2期196-200,共5页Journal of Changchun University of Technology
基 金:吉林省科技厅基金资助项目(吉科合字第sc0601019)
摘 要:进行基于支持向量机的贷款风险评估研究,在训练向量空间中找到一个分类超平面,使向量分类具有较小的错误率,并获得较强的可扩展能力。从理论分析与实验对比可知,采用遗传算法可使其收敛到全局最优参数,确保支持向量机的分类和扩展的性能达到最优。在平均执行时间小于1 s内获得的高于94.3%正确率的实验结果验证了本算法的正确性与有效性,同时也表明支持向量机在小样本特征空间分类中所具有的优良性能。This paper describes the use of Support Vector Machine to evaluate the credit risk. It is to find a super-plane in the trained victor to minimize the fault rate and obtain the strong extensibility. With both the theory and experiment, the genetic algorithm demonstrates the converged results which illustrate that the truth rate is higher than 94.3% in the mean execute time less than 1 second, and the Support Vector Machine possess the superior properties in the small sample collections.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117