基于均值距离测度的医学图像配准(英文)  被引量:12

Mean Divergence Measures for Medical Image Registration

在线阅读下载全文

作  者:杨金宝[1] 刘常春[1] 胡顺波[1,2] 顾建军 

机构地区:[1]山东大学控制科学与工程学院,山东济南250061 [2]临沂师范学院物理系,山东临沂276005 [3]达尔豪西大学电气与计算机工程系,加拿大哈利法克斯

出  处:《光子学报》2008年第5期1046-1051,共6页Acta Photonica Sinica

基  金:The Hi-Tech Research and Development Program(863) of China (2006AA02Z4D9);Shandong Province Natural Science Foundation (Z2006C05)

摘  要:针对互信息测度在配准医学图像时易陷入局部极值、速度慢的缺点,提出了基于均值不等式的均值距离测度.首先根据均值不等式推导出5种均值距离测度:方根-算术均值距离(SAM)、方根-几何均值距离(SGM)、方根-调和均值距离(SHM)、算术-几何均值距离(AGM)、算术-调和均值距离(AHM).然后通过人体脑部CT/MR和MR-T1/PD图像的刚体配准实验,从函数曲线、配准精度、计算时间和收敛性能方面,对互信息与5种均值距离信息测度进行了比较与分析.实验结果表明,在不损失配准精度的前提下,AHM和SAM测度可以获得更快的配准速度,对噪声有很强的鲁棒性.In order to improve registration speed of mutual information measure, tne mean divergence measures are used as the similarity measure of medical image registration. The square root arithmetic mean divergence (SAM), square root geometric mean divergence (SGM), square root harmonic mean divergence (SHM), arithmetic geometric mean divergence (AGM), and arithmetic harmonic mean divergence (AHM) measures are applied to rigid registration of computed tomography (CT)/ magnetic resonance (MR) and MR-T1/PD images. The function curves, registration accuracy, registration time and convergence of these measures are studied in comparison with that of mutual information. The results show that the proposed registration measures have similar function curves and accuracy with mutual information, and the AHM and SAM measures have significant improvements in registration speed.

关 键 词:图像配准 相似性测度 互信息 均值距离 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象