Hilbert-Huang变换结合近似熵在疲劳驾驶时脑电分析中的应用  被引量:1

Application of Combining Hilbert-Huang Transform with Approximate Entropy in EEG Signal Analyzing of Fatigued Driving

在线阅读下载全文

作  者:彭军强[1] 吴平东[2] 殷罡[2] 陈之龙[2] 马树元[2] 

机构地区:[1]天津工业大学机械电子学院,天津300160 [2]北京理工大学机械与车辆工程学院,北京100081

出  处:《公路交通科技》2008年第6期126-129,共4页Journal of Highway and Transportation Research and Development

基  金:国家自然科学基金(60274035,60674052)

摘  要:研究疲劳驾驶状态下驾驶员脑电信号的特征。结合Hilbert-Huang Transform(HHT)方法和近似熵方法,提出了一种新的脑电信号处理方法:HHT近似熵方法,首先用HHT方法把脑电信号分解为多个内在的模式分量,然后求取各个模式分量的近似熵值,探讨疲劳驾驶时脑电信号的非线性特征。在汽车模拟驾驶仪上进行疲劳驾驶,同时用脑电测量仪器测量驾驶员脑电,用HHT近似熵方法对正常静坐、正常驾驶、疲劳静坐、疲劳驾驶4种脑电信号进行具体的分析处理,结果表明d_2、d_4近似熵比值可以区分4种脑电信号,可以作为疲劳驾驶时的脑电特征。为疲劳驾驶的预警系统研究提供了理论上的一些依据和参考。EEG characters of drivers in fatigued driving were studied. Combining Hilbert-Huang Transform (HHT) method with Approximate Entropy method, a new method HHT Approximate Entropy was proposed. First, the EEG signal was decomposed into several IMFs (Intrinsic Mode Function) using HHT method.Second, the APEN (Approximate Entropy) values of IMFs were calculated and EEG's nonlinear characters were explored according to theses values. Driving in the Car Simulating Driving System, the driver' s EEG signal was measured when he was fatigued. Four kinds of EEG signals, including normal sitting, normal driving, fatigued sitting, fatigued driving, were analyzed using HHT Approximate Entropy. The results indicate that the APEN ratio of d2 to d4 can distinguish the four kinds of EEG signals accurately, so it can be the EEG character of driver when he is in fatigued driving. It can provide a reference for the research of system of preventing fatigued driving.

关 键 词:智能运输系统 疲劳驾驶 HHT近似熵 脑电 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象