Polish空间上的概率测度所构成的空间  

On Spaces of All Probabilities on Polish Spaces

在线阅读下载全文

作  者:方涛[1] 

机构地区:[1]湖南财经高等专科学校,湖南长沙410205

出  处:《吉首大学学报(自然科学版)》2008年第2期25-26,共2页Journal of Jishou University(Natural Sciences Edition)

摘  要:令S为Polish空间,M1(S)为其上所有的概率构成的空间,赋予M1(S)弱拓扑.设{Xn}n≥1为一列M1(S)列值的随机变量,{μn}n≥1为相应的一阶矩测度序列,那么当n→∞时,若{μn}n≥1在S上是指数胎紧的,则{Xn}n≥1在M1(S)上是指数胎紧的.此外,当S局部紧时,如下的度量诱导出M1(S)上的弱拓扑:d(μ,)=supf∈F|μ(f)-(f)|,u,∈M1(S).其中F是S上α-Hlder范数不超过某正常数的有界函数全体,α∈(0,1].Assume S is a Polish space and M1 ( s ) the space of all probabilities on it. Endow M1 ( s ) with the weak topology. Let { Xn } n≥1 be a sequence of random variables M1 ( s )-valued and { μn } n≥1 its first moment measure sequence .Then { Xn }n1 is exponentially tight on M1 ( s ) provided so is {μn }n≥1, on S. Moreover, when S is locally compact, the weak topology on M1 (s) can be induced by the following metric: d (μ,μ) =sup f∈F|μ(f) - μ^- (f) | arbitary μ,μ^- ∈ M1 (S), where, F is the set of bounded continuous functions on S with a-Htilder norm is uniformly bounded by a C 〉 0, and α ∈(0,1].

关 键 词:指数胎紧 一阶矩测度 弱拓扑 Hlder连续 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象