检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学计算机学院,重庆400030 [2]重庆工学院计算机学院,重庆400050
出 处:《重庆大学学报(自然科学版)》2008年第6期652-657,共6页Journal of Chongqing University
基 金:重庆市自然科学基金资助项目(CSTC2007BB2406)
摘 要:大规模的数据挖掘如聚类问题迫切需要大量计算,提出了自适应微粒群优化的并行聚类算法。通过从多种群并行地开始搜索,基于群体搜索技术的微粒群优化算法减少了初始条件的影响,采用任务并行和部分异步通信策略,降低计算时间。结合并行微粒群算法的自适应参数动态优化特性,克服群体逐渐失去迁移性而停止进化的问题,保持群体多样性从而了避免种群退化。仿真实验证明,该算法在并行机群上运行时,加快了聚类算法的计算速度,提高了聚类质量。Full-scale data mining, such as in cluster problems, requires large numbers of computations. A parallel cluster algorithm for self-adaptive particle swarm optimization was proposed to deal with this problem. The proposed parallel particle swarm optimization algorithm reduced the impact of the initial conditions via parallel searches of the globally best position amongst a varied population. Task parallelization and partially asynchronous communication of the algorithm were employed to decrease computing time. Furthermore, if combined with the characteristics of self-adaptive and dynamical optimization parameters of the parallel particle swarm algorithm, the problems of particle mobility loss and the end of evolution could be dealt with successfully. When modified thusly, the algorithm maintains individual diversity and restrains degeneration. The simulation experiments indicate the algorithm helps increase computing speed and improve cluster quality.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80