检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆师范大学数学与计算机科学学院,重庆400047
出 处:《重庆师范大学学报(自然科学版)》2008年第1期10-13,共4页Journal of Chongqing Normal University:Natural Science
基 金:重庆市教委项目(No.KJ070806)
摘 要:本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)<∞,又设F(T)有界,且T在F(T)中的点处一致连续。任取一点x0∈C,{xn}是根据xn+1=αnxn+βnTnyn+γnunyn=ξnxn+ηnTnxn+δnvn定义的具误差的修改的Ishikawa迭代得到的,其中{un},{vn}是C中的两个有界点列,{αn},{βn},{γn},{ξn},{ηn},{δn}是[0,1]中的6个数列且满足αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn<+∞,∑∞n=1γn<+∞。则{xn}强收敛于T的不动点的充要条件是limn→∞infd(xn,F(T))=0,其中d(x,A)为x到集合A的距离。本文的结果推广改进了文献[1-7]中的结论。The purpose of this paper is to study the strong convergence of a generalized asymptotically quasi-nonexpansive type mapping in the non-empty closed and convex subset in Banach spaces,and to give some necessary and sufficient conditions for the modified Ishikawa iterative sequence with errors to converge strongly to a fixed point of the generalized asymptotically quasi-nonexpansive type mapping.Let E is a Banach space,C is a nonempty closed convex subset of E,and T∶C→C is a generalized asymptotically quasi-nonex-pansive type mapping with asymptotically Coefficient k. such that ∑∞n=1(kn-1)〈∞,Let F(T) is bounded,and T stongly converges to a point of F(T) again. Define the modified Ishikawa iterative sequence{x}with error as given in ( 1 ) with{Un},{Un}bounded sequences in C and {αn},{βn},{γn},{ξn},{ηn},{δn}sequences in {0,1}satisfying αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn〈+∞,∑∞n=1γn〈+∞,Then,{Xn}converges to a fixed point of T. If and only if lim inf d(Xn,F(T))=0where d(x,A) denotes the distance of x to set A. The results presented in this paper extend and improve the corresponding results of refs[ 1-7 ].
关 键 词:非空闭凸集 广义渐近拟非扩张型映象 ISHIKAWA迭代 不动点
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28