检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]曲阜师范大学数学系,曲阜237165 [2]汕头大学数学研究所,汕头515063
出 处:《科学通报》1997年第18期1931-1934,共4页Chinese Science Bulletin
基 金:国家自然科学基金(批准号:19501026);山东(青年)科学基金;广东(青年)科学基金资助项目
摘 要:Brown运动关于圆与球面的首中时、首中点、末离时以及末离点的分布和联合分布已有很多研究,关于矩形和长方体也有一些讨论,但Brown运动关于椭圆和椭球相应问题的研究还很少.白苏华等人用保形变换的方法,求出了从椭圆内任一点出发的平面Brown运动首中点的分布,但其他问题还没有研究,仍然是有兴趣的未解决问题.本文旨在讨论Brown运动关于椭圆首中时与首中点的联合分布.但由于椭圆没有象圆周那样的旋转对称性,所以不能完全借鉴已有的方法.我们利用Mathieu函数及变型Mathieu函数去表示其分布密度,从而也得到了首中时和首中点的分布密度.这样从数学上得到了精确的分析表达式,使得我们能够利用已有Mathieu函数理论及其近似计算,给出Brown运动关于椭圆首中时与首中点的估计,同时对模拟计算有一定的帮助.
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229