Brown运动关于椭圆首中时与首中点的联合分布  

在线阅读下载全文

作  者:尹传存[1] 赵学雷[2] 

机构地区:[1]曲阜师范大学数学系,曲阜237165 [2]汕头大学数学研究所,汕头515063

出  处:《科学通报》1997年第18期1931-1934,共4页Chinese Science Bulletin

基  金:国家自然科学基金(批准号:19501026);山东(青年)科学基金;广东(青年)科学基金资助项目

摘  要:Brown运动关于圆与球面的首中时、首中点、末离时以及末离点的分布和联合分布已有很多研究,关于矩形和长方体也有一些讨论,但Brown运动关于椭圆和椭球相应问题的研究还很少.白苏华等人用保形变换的方法,求出了从椭圆内任一点出发的平面Brown运动首中点的分布,但其他问题还没有研究,仍然是有兴趣的未解决问题.本文旨在讨论Brown运动关于椭圆首中时与首中点的联合分布.但由于椭圆没有象圆周那样的旋转对称性,所以不能完全借鉴已有的方法.我们利用Mathieu函数及变型Mathieu函数去表示其分布密度,从而也得到了首中时和首中点的分布密度.这样从数学上得到了精确的分析表达式,使得我们能够利用已有Mathieu函数理论及其近似计算,给出Brown运动关于椭圆首中时与首中点的估计,同时对模拟计算有一定的帮助.

关 键 词:首中时 首中点 维纳过程 椭圆首中时 

分 类 号:O211.62[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象