检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学机械工程与应用电子技术学院工程数值模拟中心,北京100022 [2]泰山学院应用科学技术系,泰安271021
出 处:《计算力学学报》2008年第3期345-351,共7页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(10472003);高校博士点基金(20060005010)资助项目
摘 要:基于ICM(独立、连续、映射)方法解决具有屈曲约束的连续体拓扑优化问题。建立以结构重量为目标,以屈曲临界力为约束的拓扑优化模型;采用独立的连续拓扑变量,借助泰勒展式将目标函数作二阶近似展开;借助瑞利商、泰勒展式、过滤函数将约束化为近似显函数,避免了灵敏度的计算;将优化模型转化为对偶规划,并利用序列二次规划求解,减少了设计变量的数目,缩小了模型的求解规模。给出三个算例,结果表明:该方法可有效地解决屈曲约束的连续体拓扑优化问题,能够得到合理的拓扑结构,并有较高的计算效率。In this paper, according to the ICM (Independent Continuous Mapping) method, the topology optimization problem of continuum structures with the buckling constraints are solved. The topology optimization model for the continuum structure is constructed, which has the minimized weight as the objective function subjected to the buckling constraints. The continuous independent topological variables are used in this problem. Based on the Taylor expansion, the filtering function and the Rayleigh quotient, the objective function is approximately expressed as a second-order expressions and the buckling constraint is approximately expressed as an explicit function. Thus the analysis of the sensitivity is avoided. The optimization model is translated into a dual programming and solved by the sequence secondorder programming. The number of the variable is reduced and the model's scale is minified. Finally, three examples are presented. They show that this method can solve the topology optimization problem of continuum structures with the buckling constraints efficiently and give more reasonable structural topologies.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30