检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学土木工程学院,四川成都610031 [2]长安大学公路学院,陕西西安710064
出 处:《地震工程与工程振动》2008年第3期116-121,共6页Earthquake Engineering and Engineering Dynamics
基 金:铁道部科技研究开发计划项目(2002G037)
摘 要:首先介绍了悬索拱桥的特点和极限承载能力计算方法,然后基于有限元理论,考虑施工阶段的位移和应力的叠加效应、几何非线性、材料非线性以及拱肋等构件的初始缺陷的影响,对某铁路悬索拱桥的极限承载力进行了分析,计算得出结构在施工阶段弹性稳定安全系数为5.2~5.8,非弹性稳定安全系数为2.0~2.6;在运营阶段其弹性稳定安全系数为4.9-5.1,非弹性稳定安全系数为1.7~1.9,表明该桥弹性稳定性和非弹性稳定性都是足够的。其计算方法和结果对于悬索拱桥的计算及设计理论有一定的借鉴价值。The characteristics of suspended arch bridge and the method for calculating the ultimate load-carrying capacity are introduced firstly. Then based on the theory of finite element, the ultimate load-carrying capacity of a railway suspended arch bridge is analyzed considering the deformation during construction and the superposition effect of stresses, geometric nonlinearity, material nonlinearity and the effect of initial defect in the members ( such as arch rib) during construction. The research results show that the elastic stability factors are 5.2 to 5.8 ; the non-elastic stability factors are 2.0 to 2.6 in the construction stage ; the elastic stability factors are 4.9 to 5.1 ; the non-elastic stability factors are 1.7 to 1.9 in the service stage. So the elastic stability and the non-elastic stability are adequate in construction stage and service stage. Finally, a conclusion is drawn that the calculating method and the results are valuable for the calculation and design theory of suspended arch bridge.
关 键 词:悬索拱桥 材料非线性 几何非线性 安全系数 极限承载能力
分 类 号:P315.952.2[天文地球—地震学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171