检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083
出 处:《信息与控制》2008年第3期334-338,345,共6页Information and Control
基 金:国家自然科学基金(60634020;60574030);国家973计划资助项目(2002cb312200);博士点基金(20050533016)
摘 要:提出一种构造稀疏化最小二乘支持向量机的方法.该方法首先通过斯密特正交化法对核矩阵进行简约,得到核矩阵的基向量组;再利用核偏最小二乘方法对最小二乘支持向量机进行回归计算,从而使最小二乘向量机具有一定稀疏性.基于稀疏最小二乘向量机建立了非线性动态预测模型,对铜转炉造渣期吹炼时间进行滚动预测.仿真结果表明,基于核偏最小二乘辨识的稀疏最小二乘支持向量机具有计算效率高、预测精度好的特点.A method is proposed to construct sparse least squares support vector machines (LSSVMs). Firstly, the kernel matrix is reduced by Schmidt orthogonalization to get base vectors of the kernel matrix. Then, regression of the LSSVM is computed with kernel partial least squares so that the LSSVM is sparse. A nonlinear dynamic prediction model based on sparse LSSVM is constructed to predict the converting time of copper converter at the slag making stage. The simulation results show that the sparse LSSVM based on kernel partial least squares identification is of high computation efficiency and good prediction accuracy.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.158.217