检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学电子科学与技术系
出 处:《电子测量技术》2008年第5期52-55,共4页Electronic Measurement Technology
摘 要:本文提出了一种基于Gabor小波和灰度共生矩阵进行数字图像特征提并与支持向量机模型相结合的纹理分类算法。首先分别利用Gabor变换和灰度共生矩阵提取数字图像的特征,进而利用支持向量机算法实现图像的训练和分类。实验结果表明,与传统的分类方法相比,这种通过Gabor小波和灰度共生矩阵得到数字图像的特征并与支持向量机相结合的方法能有效地提高分类正确率。This paper presents a texture classification algorithm using Gabor wavelet and Gray Level Co-occurrence Matrix as feature extraction method and Support Vector Machine as classifier. First, Gabor transform and Gray Level Co-Occurrence Matrix are used to get the features of the digital images, and then SVM classifiers are followed to build image and realize classification. The experimental results have shown that the methods described in this paper can be more effectively improve the rate of correct classification than the traditional method of classification.
关 键 词:数字图象 纹理特性 GABOR小波 灰度共生矩阵 支持向量机 特征提取
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117