关于不定方程x^2-3y^4=166  被引量:3

On the Diophantine Equation y^2-3y^4=166

在线阅读下载全文

作  者:朱德辉[1] 

机构地区:[1]重庆师范大学数学与计算机科学学院,重庆400047

出  处:《重庆师范大学学报(自然科学版)》2008年第3期21-23,共3页Journal of Chongqing Normal University:Natural Science

基  金:重庆市教委科研基金项目(No.010204)

摘  要:利用一种初等的证明方法,对一个不定方程x2-3y4=166的正整数解进行了研究。证明过程中仅涉及到初等的数论知识,即运用递归数列、同余式和平方剩余的方法。首先利用Pell方程的解的性质把不定方程x2-3y4=166的解转化为由两个非结合类给出,然后再进一步利用相关知识使得问题简化为两种相对简单的情况,对其每一种情况都利用递归数列,同余式和平方剩余的相关知识对其是否有正整数解进行证明,如果有正整数解则进行求解。最后得出该不定方程x2-3y4=166仅有正整数解(x,y)=(13,1),(293,13)。The study of the Diophantine equation x^2 -Dy^4 = N( D and N are the given integers, D 〉 0 and D is non-square)has caused some authorsinterests, such as Cohn,Tzanakis, LI Jin-xiang , LIN LI-juan. Cohn has proven some conclusions. For example :N(5,44) =1,(x,y) =(7,1);N(5,11) =2,(x,y) =(4,1),(56,5);N(5,-44) =3,(x,y) =(6,2),(19,3),(181,9). Tzanakishas proven some conclusions while y≡0(mod8). For example:N(2,17) =0,N(2,41) =0,N(8,17) =0,N(2,97) =0. LI Jin-xiang has proven one conclusion: N(3,46) =2, (x,y) = (7,1), (17,3). LIN LI-juan has also proven one conclusion: N(3,22) =2, (x,y) = (5,1), (85,7). But this Diophantine equation x^2 -3y^4 = 166 still has not been solved until now. In this paper the author has proved that the Diophantine equation x^2 - 3y^4 = 166 has only positive integral solutions (x,y) = ( 13,1 ), (293,13) with the primary methods of recursive sequence , quadratic remainder and congruence.

关 键 词:平方剩余 递归序列 正整数解 不定方程 

分 类 号:O156.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象