检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学应用力学研究所,太原030024
出 处:《应用数学和力学》2008年第7期825-832,共8页Applied Mathematics and Mechanics
基 金:国家自然科学基金资助项目(10772129);山西省青年科技基金资助项目(2006021005)
摘 要:在一维弹性细杆拉压、扭转和弯曲波的经典线性理论基础上,分别计入有限变形和弥散效应,借助Hamilton变分原理,由统一的方法导出了3种非线性弥散波的演化方程.对3种演化方程进行了定性分析.结果表明,这些方程在相平面上存在同宿轨道或异宿轨道,分别相应于孤波解或冲击波解.根据齐次平衡原理,用Jacobi椭圆函数展开对这些演化方程进行了求解,在一定的条件下它们均可能存在孤立波解或冲击波解,这与方程的定性分析完全一致.On the basis of classical linear theory on longitudinal, torsional and flexural waves in thin elastic rods, taking finite deformation and dispersive effects into consideration, three kinds of nonlinear evolution equations were derived. Qualitative analyses of three kinds of nonlinear equation were completed. It is shown that these equations have homoclinic or heteroclinic orbits.on the phase plane, which correspond to solitary wave or shock wave solution respectively. Based on the principle of homogeneous balance, these equations were resolved by Jacobi elliptic function expansion method. The results show that the existence of solitary wave solution and shock wave solution are possible under certain conditions. These conclusions are consistent with that of the qualitative analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249