一种基于多簇结构的高斯动态粒子群优化算法  

A Multi-Cluster Structure Based Gaussian Dynamic Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:倪庆剑[1] 邢汉承[1] 张志政[1,2] 王蓁蓁[1] 

机构地区:[1]东南大学计算机科学与工程学院,南京210096 [2]南京大学计算机软件新技术国家重点实验室,南京210093

出  处:《模式识别与人工智能》2008年第3期338-345,共8页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金资助项目(No.90412014)

摘  要:分析高斯动态粒子群优化算法(GDPSO)中新的种群产生方式的特点,针对传统粒子群优化算法中全局最优模型收敛速度快但易陷入局部最优、局部最优模型收敛速度较慢的缺点,提出一种新的粒子群信息共享方式——多簇结构.该算法在簇内部实现粒子间信息的高度共享,而在簇之间则通过松散的连接实现信息的传递,以协调 GDPSO 算法的勘探和开采能力.通过典型的 Benchmark 函数优化问题测试并分析经典拓扑以及多簇结构在GDPSO 算法中的性能,仿真实验结果表明,采用特定多簇结构的 GDPSO 算法收敛速度和稳定性显著提高,同时全局搜索能力明显增强.The method of population generation in Gaussian dynamic particle swarm optimization algorithm (GDPSO) is analyzed detailedly. Aiming at the problem of premature convergence of Gbest version and the slow search speed of Lbest version in original particle swarm optimization, a novel neighborhood topology structure called multi-cluster structure is proposed. In the proposed population structure, particles in one cluster share the information with each other, and clusters exchange their experiences through loose connection between particles. Thus, neighborhood topology is designed to coordinate exploration and exploitation. GDPSO, with several population topologies including the multi-cluster structure, is tested on four benchmark functions which are commonly used in the evolutionary computation. Experimental results show that the GDPSO with the proposed neighborhood topology can significantly speed up the convergence and efficiently improve the global search ability.

关 键 词:粒子群优化(PSO) 邻域拓扑 多簇结构 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象