主动形状模型中搜索过程与搜索空间的改进  被引量:1

Improvements on Search Process and Search Subspace in Active Shape Model

在线阅读下载全文

作  者:何良华[1] 胡蝶[2] 蒋昌俊[1] 

机构地区:[1]同济大学电子与信息工程学院,上海200092 [2]复旦大学通信科学与工程系,上海200433

出  处:《模式识别与人工智能》2008年第3期394-400,共7页Pattern Recognition and Artificial Intelligence

基  金:国家973计划项目子项目(No.2003CB316902);国家自然科学基金重点项目(No.60534060);国家973计划项目(No.2004CB318001-03)资助

摘  要:主动形状模型是近年来广泛使用的特征点对准算法.但是其搜索空间难以重构出现实中复杂多变的搜索对象.另外,搜索过程中由于没有提示或约束,故所得结果不稳定.因此,本文改进搜索空间与搜索过程,通过在搜索空间中加入主要形状变化子空间,重构模型更加泛化,利用搜索过程中的误差来分析搜索状态,反馈约束下一步的搜索方向和过程.这样的反馈、迭代搜索过程大大增加搜索过程的主动性和目的性,且搜索结果唯一.最终的人脸对准实验证明,本文的改进较大地提高了对准精度.The method of active shape model (ASM) is quite commonly used for alignment in recent years. However, its search subspace has a number of limitations on reconstructing the changeable shape in real life. In addition, since there is no restriction during searching, the result is unstable. In this paper, some improvements on search subspace and search process are proposed. By adding eigen-shape variance information to search subspace, the new search subspace can reconstruct the shape more generally. In the meantime, the search errors are analyzed and searching information of the next step is obtained. The whole search processing is iterated and connected with the feedback of search error. The feedback and iteration make the search processing more active and the final search result is unique. Several face alignment experiments are designed and the results show that the proposed method improves alignment precision greatly.

关 键 词:主动形状模型(ASM) 主分量分析 面部对准 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象