检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083
出 处:《计算机与应用化学》2008年第7期805-808,共4页Computers and Applied Chemistry
基 金:国家自然科学重点基金(60634020);博士点基金(20050533016).
摘 要:某厂锌湿法冶炼三段净化过程中的Ⅱ段主要是通过过量添加锑盐和锌粉以除去有害杂质钴离子。本文从现场检测3个月的过程生产数据中,采用SPSS统计学软件深入分析了Ⅱ段净化工矿及其影响因素的相关性,得出了影响Ⅱ段后液钴离子浓度的主要因素,提出采用等维新息灰色预测方法预测Ⅱ段后液钴离子浓度,并采用神经网络补偿灰色预测的误差值。仿真和生产实践证明,该预测模型能够较好地预测Ⅱ段后液钴离子浓度值,从而为优化锑盐和锌粉添加量的操作起指导性作用。Three-grade purification process in zinc-hydrometallurgy is adopted in a plant. In the part-Ⅱ purification, it is mainly through the production of excessive addition of antimony salts and zinc to remove harmful impurities, cobalt ions. In this paper, production data were got from the scene of the process to deeply analysis the purification technics and also the relevant factors of the process Ⅱ (P-Ⅱ) with the usage of SPSS statistical software and then got the main factors of the part-Ⅱ. Under such a premise, a control method was brought forword in the article, with the adaption of the same-order newed grey prediction method to predict cobalt ion concentration of Part Ⅱ, and then, with a neural network, compensated the error of grey forecast. Simulation and production Practice has proved that the model can better predict the cobalt ion concentration values of P-Ⅱ of, so as to optimize the antimony salt and zinc addition and take a guiding role for the process operation.
分 类 号:O6[理学—化学] TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.46.208