基于主元分析和小波变换的开工过程故障识别  

Fault identification of start-up process based on principal component analysis and wavelet transform

在线阅读下载全文

作  者:欧阳骏[1] 赵众[1] 赵劲松[1] 

机构地区:[1]北京化工大学自动化研究所,北京100029

出  处:《计算机与应用化学》2008年第7期817-822,共6页Computers and Applied Chemistry

基  金:国家自然科学基金(60774080);国家863计划(2006AA04E176);北京市科技新星计划(2005B15).

摘  要:针对蒸汽裂解实验装置的开工过程具有间歇操作,变量间相关性高的特点,传统的故障识别方法无法有效处理这种具有较强动态特性的实际工业生产过程。本文提出利用主元分析,用少量主元反映多个动态变量的综合信息,并利用正交小波变换的多尺度时频分析提取主元中表征工况变化的频带特征,对频带特征进行模式归纳分类,进而识别工况。实验结果证实了所提出方法的可行性和有效性。The start-up process of steam cracking experimental device had the characteristics of the intermittent operation and high correlation of variables. Meanwhile, the traditional fault identification methods can not effectively deal with such a strong dynamic characteristics of the actual industrial production process. The paper proposed to use PCA, which can make principal components with a small number of dynamic variables reflect the number of comprehensive information, then using the time-frequency analysis of multl-scale of the orthogonal wavelet transform to extract the frequency bands. The characteristics of the frequency bands which performance the change in the principal component of the status, and the band features categorized by model, further more identifying the status. The experimental results show that the proposed method is feasible and effective.

关 键 词:动态多变量 主元分析 正交小波变换 蚁群优化 故障识别 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象