局部晚期非小细胞肺癌术后脑转移预测数学模型的临床验证  被引量:5

Clinical verification of a mathematical model for prediction of brain metastases in patients with locally advanced non-small cell lung cancer

在线阅读下载全文

作  者:张彬彬[1] 王思愚[1] 区伟[1] 林勇斌[1] 杨桦[1] 孙海波[1] 

机构地区:[1]中山大学肿瘤医院胸科,华南肿瘤学国家重点实验室,广州510060

出  处:《中国肺癌杂志》2008年第3期414-419,共6页Chinese Journal of Lung Cancer

基  金:广东省科技厅项目(No.2005B30301002)资助~~

摘  要:背景与目的脑转移是局部晚期非小细胞肺癌(Locally advanced non-small cell lung cancer,LA-NSCLC)综合治疗后最主要的失败原因之一,是否进行预防性脑放射(Prophylactic cranial irradiation,PCI)、如何筛选出脑转移高危患者仍没有定论。既往报道了LA-NSCLC术后脑转移预测数学模型,本研究旨在利用新的病例资料评估该数学模型的预测准确性。方法以2004年1月-2006年12月期间,196例行外科手术的III期NSCLC患者为研究对象,分析实际脑转移发生率与数学模型预测脑转移发生率的一致性。结果全组病例的中位生存期32.1个月,1、2、3年生存率分别为84.7%、63.9%、51.7%;脑转移的发生率为42.3%(83/196),首发脑转移率为28.1%(55/196),数学模型预测脑转移的灵敏度为84.3%,特异度为64.6%,阳性预测价值为63.6%,阴性预测价值为84.9%,一致性检验Kappa值为0.47(P<0.001)。结论运用该数学模型可较准确预测局部晚期非小细胞肺癌术后脑转移高危患者,可作为局部晚期非小细胞肺癌术后PCI临床研究筛选脑转移高危患者的依据。Background and objective Brain metastases are the main determining factor in the failure of patients with locally advanced non-small cell lung cancer (LA-NSCLC) by muhimodality treatments. Whether we can use PCI to the patients with NSCLC and how to screen out high-risk patients are still controversial. We have reported a mathematical model, through which we can predict high-risk brain metastases in patients with postoperative LA-NSCLC. The purpose of this study is to verify the accuracy of the mathematical model, using new cases information. Methods A total of 196 patients of stage Ⅲ NSCLC treated with surgical resection were retrospectively analyzed, to verify the consistency between actual and predictive brain metastases. Results The median survival time after surgery for all patients was 32.1 months. The one-, two- and three- year survival rate were 84.7%, 63.9%, 51.7%. The incidence rate of brain metastases was 42.3% (83/196). The incidence rate of brain metastases as the first site of recurrence was 28.1% (55/196). Results of accuracy of the mathematical model were sensitivity of 84.3%, specificity of 64.6%, positive predictive value of 63.6% and a negative predictive value of 84.9%, Measure of agreement Kappa value of 0.47 (P〈0.001). Conclusion The mathematical model can predict brain metastases high risk patients with LA-NSCLC after surgery. It can be used as a basis to screening out patients of high risk brain metastases in future clinical trails about PCI.

关 键 词:转移 数学模型 肺肿瘤 脑放射 

分 类 号:R734.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象