基于Zernike矩与网格特征的两级神经网络字符识别系统  

The two-level neural network character recognition system based on Zernike moment and grid features

在线阅读下载全文

作  者:李了了[1] 

机构地区:[1]内江师范学院计算机与信息科学系,四川内江641112

出  处:《宜春学院学报》2008年第2期31-33,共3页Journal of Yichun University

基  金:四川省教育厅青年基金资助项目(项目编号:2004B022)

摘  要:从待识别字符中分别提取网格与Zernike矩特征,并将两种特征输入改进的BP神经网络进行比较,得知网格特征对随机噪声及笔划粗细变化不敏感,而Zernike矩特征对旋转不敏感,针对两种字符特征的缺点与优点,把以上两个神经网络进行联合,设计了一个两级神经网络字符识别系统,实验表明,基于不同特征输入的神经网络识别结果之间存在互补现象,上述两级神经网络分类器串级集成字符识别系统正确识别率达98%。The grid feature and Zernike moment feature are abstracted from the recognized characters and the two features are input to the modified BP neural network. According to comparison it is known that the rigid feature is not sensitive to the random noise and the width change of strokes, and the Zernike feature is not sensitive to rotation. Combining the two features'shortage and advantage, the two BP neural networks are integrated and a two- level neural network character recognition system is designed. The experiment results show that the complementary facts exist among the recognition results obtained by neural network based on different feature inputs, the character recognition system presented in this paper can obtain the correct recognition rate of 98%.

关 键 词:字符识别 ZERNIKE矩 网格特征 神经网络 

分 类 号:TN919[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象