检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学,陕西西安710072
出 处:《西北工业大学学报》2008年第3期346-348,共3页Journal of Northwestern Polytechnical University
基 金:陕西省自然科学基金(2005A17)资助
摘 要:研究了随机变量序列{Xn,n≥1}为NA相协样本条件下,均值X-n的随机加权逼近。用n(Hk(x)-X-n)的条件分布去模拟n(X-n-μ)的分布,证明了该分布的随机加权逼近及其收敛性,并对研究结果进行了仿真分析。Aim. Ref. 3 authored by Yu proposed the estimation of NA (negative association) dependent sample mean by using Bootstrap approximation method. Ref. 4 authored by Zheng pointed out that Random weighting approximation is better than Bootstrap approximation. In the full paper, we explain in some detail how to apply random weighting approximation method to estimating NA dependent sample mean and then use a numerical example to show that random weighting approximation method is indeed better than Bootstrap approximation method. The first topic is. random weighting approximation method for estimating NA dependent sample mean and its consistency. In the first topic, we give a mathematical proof, including a theorem, for the consistency of the random weighting approximation. The second topic is. simulations results and their analysis. In this topic, we use the random weighting approximation method and the Bootstrap approximation method respectively to simulate the estimation of the data measured by two gyros. The simulation results, shown in Fig. 1 and 2 in the full paper, indicate preliminarily that the estimation of the data with the random weighting method is highly accurate and indeed better than the Bootstrap approximation method.
分 类 号:O212.7[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.218