基于用户满意度的学习服务发现算法  被引量:3

An e-Learning Service Discovery Algorithm Based on User Satisfaction

在线阅读下载全文

作  者:朱郑州[1] 吴中福[1] 吴开贵[1] 

机构地区:[1]重庆大学计算机科学与工程学院,重庆400044

出  处:《计算机研究与发展》2008年第7期1161-1168,共8页Journal of Computer Research and Development

基  金:国家发改委科学研究计划基金项目(CNGI-04-15-3A);国家"十一五"重大科技攻关基金项目(2006BAH02A24-6)

摘  要:针对用户对e-Learning服务发现系统提供的服务不满意或者满意程度不稳定的问题,引入了用户满意度因子,设计了一个学习服务发现算法——eLSDAUS.该算法允许用户参与服务发现的过程,对服务发现的效果进行评价.学习服务发现系统把用户的评价反馈到学习服务发现算法,利用修正函数修正更新发布服务各属性的匹配度权值,优化反馈给用户的综合匹配度的计算.实验表明,在发布的学习服务数量超过1万时,该算法能够提高服务发现的查准率3%,而且随着发布服务数量的增多,效果会更好.经过127天的学习,用户对服务发现结果的总体满意比率可超过93%.There are more and more e-Learning services used in computer supported collaborative learning,hence it is becoming important to locate proper e-Learning services in an accurate and efficient way.In the design of this paper,an annexed algorithm named eLSDAUS is proposed to improve the existing semantic-based e-Learning service matchmaking algorithm.In the algorithm,a new factor—user satisfaction which is the user's feeling about the result of service discovery is led-in.This algorithm allows users to take part in the process of e-Learning service discovery,and also allows them evaluate the result of service discovery.User's evaluation in the form of user satisfaction is fed back to the system.Adopting an amendatory function which takes the user satisfaction as input,the system modifies the weights of each property of the advertise service,and then the total match degree of service discovery up to the best.2 methods are adopted to encourage users to use the e-Learning service discovery system.Experiments indicate that compared with the traditional algorithms,the precision of the service discovery is improved more than 3 percent as the number of advertisement services is up to 10000,and with the increase of advertisement services' sum,the effect will be better.After learning for 127 days,over 93% students are satisfied with the e-Learning service discovery result.

关 键 词:学习服务 领域本体 服务发现算法 用户满意度 修正函数 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象