检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:左军毅[1] 梁彦[1] 潘泉[1] 赵春晖[1] 张洪才[1]
出 处:《自动化学报》2008年第7期736-742,共7页Acta Automatica Sinica
基 金:国家自然科学基金重点项目(60634030);国家自然科学基金(60372085)资助~~
摘 要:视角变化往往会引起目标外观特征的变化,传统的基于单一颜色直方图模型的Camshift跟踪算法往往不能适应这种变化.为此,本文从提高模型描述能力入于,提出利用目标外观的先验知识,为目标建立多个颜色模型,在此基础上设计目标函数,通过对目标函数的优化,实时地为每帧跟踪从多个模型的凸组合中选取最优模型.另外,在对Camshift算法深入研究的过程中,发现了概率图平均亮度和图像块颜色分布之间的一种定量关系,这种关系为进一步理解多模型算法的工作机理提供了帮助.头部跟踪的实验结果表明,与单一固定模型以及自适应单模型算法相比,多模型Camshift算法对目标外观的快速变化适应性很强,而且计算代价不大.Traditional Camshift tracker based on a single color histogram model is not robust to appearance changes of the target caused by changing viewpoint. To tackle the problem, a possible way is to use a model with more powerful representation ability. In this paper, we model the target with multiple color distributions according to prior knowledge of the target and then design a cost function. Through minimizing the cost function, the optimal model is selected in real time from the convex combination of model sets for tracking in the next frame. In addition, when researching Camshift tracker in detail, we find the relationship between the average intensity of probability image and the color distribution histogram of image pitches, which helps to illuminate the mechanism of model selecting process. Experimental results conducted on head sequences demonstrate our tracker can deal with dramatic appearance changes of target in an elegant manner with low computational cost when compared with Camshift tracker with a single fixed model or single adaptive model
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.159.67