检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学技术与工程》2008年第14期3777-3782,共6页Science Technology and Engineering
基 金:国家科技攻关计划项目(2002BA901A28);上海水产大学博士科研启动基金资助
摘 要:将自适应粒子群优化(APSO)算法应用在系统辨识和参数优化中,定性地分析系统参数空间范围,把系统辨识和参数优化问题转化为参数空间寻优,利用APSO算法在寻优过程中有效避免局部最优的特点,在整个参数空间内并行寻找获得系统参数的最优解。通过对多种模型的仿真实验研究表明,APSO算法在系统辨识和参数优化问题中优于原有的GA和PSO方法。The adaptive particle swarm optimization (APSO) algorithm is used in system identification and parameter optimization. The problems of system identification and parameter optimization can be viewed as optimization problems in parameter space by qualitatively analyze the scope of system parameter space. The adaptive parti- cle swarm optimization algorithm can effectively avoid getting into local optimum and is used to obtain the optimal solution by searching in the whole parameter space in parallel. The simulations were done for different model exam- pies. The experiment results show that adaptive particle swarm optimization algorithm is an effective method better than GA and PSO for system identification and parameter optimization.
分 类 号:TP273.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15