检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]内蒙古师范大学非物质文化遗产保护与研究中心,内蒙古呼和浩特010022 [2]内蒙古师范大学人事处,内蒙古呼和浩特010022
出 处:《内蒙古师范大学学报(自然科学汉文版)》2008年第4期573-578,共6页Journal of Inner Mongolia Normal University(Natural Science Edition)
基 金:国家自然科学基金资助项目(10561006);内蒙古师范大学研究生科研创新基金资助项目(YJS07001)
摘 要:明末,《几何原本》中的黄金分割传入中国,其法理皆明,徐光启称之为理分中末线.论述了前清中算家对《几何原本》中理分中末线的研究:李子金另辟蹊径,从西方传入的切割线定理出发找到了一种解释;梅文鼎以"几何即勾股"的信念彻底解决了理分中末线的相关问题;杨作枚以中国古代数学传统的面积割补解释了理分中末线的作法,居然与《几何原本》中的解释殊途同归.三位中算家从不同角度对理分中末线进行研究,均是以股为勾2倍的勾股形作为解释基础,同时赋予黄金分割清晰多样的几何图解.虽然他们对理分中末线的应用程度有高下之分,但从解释黄金分割来说,可谓是异曲同工,均对传入中国的西方数学知识做出了创新性的工作.During the late Ming Dynasty,Golden Section,which is named by Xu Guangqi(徐光启) as Lifenzhongmoxian(理分中末线), was introduced into China by Euclid’s element, and furthermore, Chinese mathematicians in the early Qing Dynasty enriched Golden Section by clarifying its principles according to their understandings. Three Chinese mathematicians, Li Zijin(李子金), Mei Wending(梅文鼎), and Yang Zuomei(杨作枚), studied Golden Section from different aspects. What underlies their understandings is that they all adopted the same principle, gougu (勾股) principle, as the basis for explaining Golden Section. At the same time, they illustrated Golden Section by using various clear diagrams. Therefore, although there is different among them in the depth of adopting Golden Section,it is beyond all doubt that the three arithmeticians have brought forth new ideas from the western arithmetic.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222